
Basics of programming
in C++

Prep ared by Enas Naffar for the u s e of program m ing f u n d am enta l s (1)
cou rse at Ph i la de lph ia Un ivers i ty.

T h e s l i d e s i n c l u d e m a t e r i a l f r o m I n t r o d u c t i o n t o C + + l e c t u re n o t e s -
M a s s a c h u s e t t s I n st i t u t e o f Te c h n o l o g y a n d P F 1 l e c t u re n o t e s - P h i l a d e l p h i a
U n i v e rs i t y.

C++ brief introduction
▪ C++ is popular, particularly for applications that require speed and/or access

to some low-level features. It was created in 1979.

▪ C++ is a high-level language:

o when you write a program in it, you don’t need to worry about the details of processor

instructions.

o C++ does give access to some lower-level functionality than other languages (e.g. memory

addresses).

First C++ Example

// Hello world example

#include <iostream>

int main()

{

std::cout << "Hello World!\n";

return 0;

}

Explanation
// indicates that everything following it until the end of the line is a comment. A
comment is ignored by the compiler. Another way to write a multiple-line comment is
to put it between /* and */
Comments exist to explain non-obvious things going on in the code.

#include: a preprocessor command to include the contents of another file, here the
iostream file, which defines the procedures for input/output.

int main() {...} defines the code that should execute when the program starts up. The
curly braces represent a grouping of multiple commands into a block.

cout << : This is the syntax for outputting some piece of text to the screen.

Explanation
Namespaces: In C++, identifiers can be defined within a context – sort of a directory of
names – called a namespace. When we want to access an identifier defined in a
namespace, we tell the compiler to look for it in that namespace using the scope
resolution operator (::). Here, we’re telling the compiler to look for cout in the std
namespace, in which many standard C++ identifiers are defined. A better alternative is to
add the following line below line 2:

using namespace std ;"

Strings: A sequence of characters such as “Hello, world “ is known as a string.

return 0 indicates that the program should tell the operating system it has completed
successfully.

Basic definitions
• A statement is a unit of code that does something – a basic building block of a
program. Example: cout<< “C++ is fun”;

• An expression is a statement that has a value – for instance, a number, a
string, the sum of two numbers, etc. Example: 4 + 2, x - 1

Not every statement is an expression. It makes no sense to talk about the value
of an #include statement, for instance.

Data types

Variables
We might want to give a value a name so we can refer to it later. We do this
using variables.

A variable is a named location in memory. For example, say we wanted to use
the value 4 + 2 multiple times. We might call it x and use it as follows:

Variables
The name of a variable may contain numbers, letters, and underscores (_), BUT should not start with a
number or contain a white space.

It should not also be a reserved word, for example: include, main, for, if .

• Example of a valid variable name:

area , length, X , Y1, abc, d3, st_number

• Example of an invalid variable name:

2Y { begins with a digit }

Ali’s { contains the symbol ‘ }

st-age { the symbol - is not underscore }

while { it is a keyword }

ab cd { it has a space }

NOTE: C++ is a case
sensitive language

Declaration and initialization
• Line 5 in the previous example which is int x is the declaration of the variable

x.

• We must tell the compiler what type x will be so that it knows how much
memory to reserve for it and what kinds of operations may be performed on it.

• Line 6, which is x = 4+2, is the initialization of x, where we specify an initial
value for it. This introduces a new operator: =, the assignment operator. We
can also change the value of x later on in the code using this operator.

• We could replace lines 5 and 6 with a single statement that does both
declaration and initialization: int x = 4 + 2;

Declaration and initialization
Examples:

o int c=5;

o int n1=3, n2=7;

o float c1=3.5, c2;

o int z;
z=7;

o char letter= ‘e’;

o string color = “red”;

=10; z=10;

Input
Now that we know how to give names to values, we can have the user
of the program input values. This is demonstrated in line 6 below:

Input

Example: cin>> length;

Output

Example: cout<< “length=”<<length;

Assignment
Storing a new value in a memory location is called an assignment.

The semantics (execution) of this statement:
1- The Expression on the RHS is evaluated
2- The result of the expression is assigned to the variable on the LHS

Assignment
NOTE:

The right hand side (RHS) of the assignment statement should be of the
same data type of the left hand side (LHS).

Examples:

1- T  true

This will be correct if T is of Boolean type.

2- A  x + y * 2

This will be correct if A has a numeric data type (e.g. integer, or real) and
the value of the expression on (RHS) has the same numeric data type.

L.H.S = R.H.S.

X+ 3 = y + 4 Wrong

Z = x +4 True

x +4 = Z Wrong

Assignment

Assignment

If we want to copy a value from one memory location (say, X) into
another location (say, Y), we say that we dereference a variable.

e.g.

X  5

Y  10

X  Y // now X has the value 10

X Y

PROGRAMMING FUNAMENTAL SLIDES 18

105 10

Operators and Expressions
Arithmetic operators:

An Arithmetic expression is composed of operands and arithmetic
operations.

- Operands may be numbers and/or identifiers that have numeric values

- Its result is a numeric value

EX: T MOD 2 gives 0 if T is any even number, and 1 if T is any odd number

Operators and Expressions
Logical operators

A Logical Expression is also called a Boolean expression.

- It is composed of operands that have logical values and logical
operators.

- Its result is a logical value (true or false)

Operators and Expressions
The truth table

(1) AND table

AND True False

True True False

False False False

21

Operators and Expressions
(2) OR table

OR True False

True True True

False True False

(3) NOT table

NOT True False

False True
22

Operators and Expressions
Relational operators:

- A relation Expression is composed of operands and operators.

- Operands may be numbers and/or identifiers that have numeric
values.

- Its result is a logical value (true or false)

Operators and Expressions

NOTES
1) A relational expression may contain arithmetic sub-

expressions,
e.g. (3 + 7) < (12 * 4)

2) A logical expression may contain relational and
arithmetic sub-expressions,

e.g.
1- x AND y AND (a > b)
2- (2 + t) < (6 * w) AND (p = q)

Operator Precedence
Expressions are evaluated according to the precedence rule.

Precedence Rule:

- Each operator has its own precedence that indicates the order of evaluation.

- If the expression has operators of the same precedence, then the evaluation starts
from the left of the expression to the right.

25

PrecedenceDescriptionOperator In

C++

Operator In
pseudo code

Higherparentheses((

!not

, /, %, /, MOD

Binary plus, binary

minus

+ , -+ , -

<, <=, >, >=<, , ≤, >, ≥

Equal, not equal== , !== , ≠

&&AND

||OR

LowerAssignment =

26

Operator Precedence

Examples

Find the value of the following expression:

(1) 5 + 8 * 2 / 4

16

4

9 (This is the final result)

27

Examples .. cont.

(2) (9 + 3) - 6 / 2 + 5

12

3

9

14 (this is the final result)

28

Examples on Logical Expressions

(1) If x = True, y = False, z = False, find the value of the
expression x AND y OR z

x AND y OR z

False

False (the final result)

29

Examples on Logical Expressions .. cont.

(2) If a = 3, b = 5, x = true, y = false, find the value of the
expression: (a < b) AND y OR x

(a < b) AND y OR x

True

False

True (the final result)

30

Short circuiting:

31

◼ Short circuiting means that we don't evaluate
the second part of an AND or OR unless we
really need to.

