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C++ brief introduction 
▪ C++ is popular, particularly for applications that require speed and/or access 

to some low-level features. It was created in 1979.

▪ C++ is a high-level language: 

o when you write a program in it, you don’t need to worry about the details of processor 

instructions. 

o C++ does give access to some lower-level functionality than other languages (e.g. memory 

addresses).



First C++ Example

// Hello world example

#include <iostream>

int main()

{

std::cout << "Hello World!\n";

return 0;

}



Explanation 
// indicates that everything following it until the end of the line is a comment. A 
comment is ignored by the compiler. Another way to write a multiple-line comment is 
to put it between /* and */
Comments exist to explain non-obvious things going on in the code.

#include: a preprocessor command to include the contents of another file, here the 
iostream file, which defines the procedures for input/output. 

int main() {...} defines the code that should execute when the program starts up. The 
curly braces represent a grouping of multiple commands into a block.

cout << : This is the syntax for outputting some piece of text to the screen. 



Explanation 
Namespaces: In C++, identifiers can be defined within a context – sort of a directory of
names – called a namespace. When we want to access an identifier defined in a
namespace, we tell the compiler to look for it in that namespace using the scope
resolution operator (::). Here, we’re telling the compiler to look for cout in the std
namespace, in which many standard C++ identifiers are defined. A better alternative is to
add the following line below line 2:

using namespace std ;"

Strings: A sequence of characters such as “Hello, world “ is known as a string.

return 0 indicates that the program should tell the operating system it has completed
successfully.



Basic definitions 
• A statement is a unit of code that does something – a basic building block of a 
program. Example: cout<< “C++ is fun”;

• An expression is a statement that has a value – for instance, a number, a 
string, the sum of two numbers, etc. Example: 4 + 2, x - 1

Not every statement is an expression. It makes no sense to talk about the value 
of an #include statement, for instance. 



Data types



Variables
We might want to give a value a name so we can refer to it later. We do this 
using variables.

A variable is a named location in memory. For example, say we wanted to use 
the value 4 + 2 multiple times. We might call it x and use it as follows:



Variables
The name of a variable may contain numbers, letters, and underscores (_), BUT should not start with a 
number or contain a white space.

It should not also be a reserved word, for example: include, main, for, if .

• Example of a valid variable name:

area , length, X , Y1, abc, d3, st_number

• Example of an invalid variable name:

2Y        { begins with a digit }

Ali’s      { contains the symbol  ‘  }

st-age   {  the symbol - is not underscore }

while     { it is a keyword } 

ab cd    { it has a space }

NOTE: C++ is a case 
sensitive language



Declaration and initialization
• Line 5 in the previous example which is int x is the declaration of the variable

x.

• We must tell the compiler what type x will be so that it knows how much
memory to reserve for it and what kinds of operations may be performed on it.

• Line 6, which is x = 4+2, is the initialization of x, where we specify an initial
value for it. This introduces a new operator: =, the assignment operator. We
can also change the value of x later on in the code using this operator.

• We could replace lines 5 and 6 with a single statement that does both
declaration and initialization: int x = 4 + 2;



Declaration and initialization
Examples:

o int  c=5;

o int n1=3, n2=7;

o float c1=3.5, c2;

o int  z;
z=7;

o char letter= ‘e’;

o string color = “red”;

=10; z=10;



Input
Now that we know how to give names to values, we can have the user 
of the program input values. This is demonstrated in line 6 below:



Input

Example: cin>> length;



Output

Example: cout<< “length=”<<length;



Assignment
Storing a new value in a memory location is called an assignment.

The semantics (execution) of this statement:
1- The Expression on the RHS is evaluated 
2- The result of the expression is assigned to the variable on the LHS



Assignment
NOTE:

The right hand side (RHS) of the assignment statement should be of the 
same data type of the left hand side (LHS).

Examples:

1- T  true

This will be correct if T is of Boolean type.

2- A  x + y * 2

This will be correct if A has a numeric data type (e.g. integer, or real) and 
the value of the expression on (RHS) has the same numeric data type.



L.H.S = R.H.S.

X+ 3 = y + 4 Wrong

Z = x +4        True

x +4 = Z        Wrong

Assignment



Assignment

If we want to copy a value from one memory location (say, X) into 
another location (say, Y), we say that we dereference a variable.

e.g.

X  5

Y  10

X  Y           // now X has the value 10

X                          Y
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Operators and Expressions
Arithmetic operators: 

An Arithmetic expression is composed of operands and arithmetic 
operations.

- Operands may be numbers and/or identifiers that have numeric values

- Its result is a numeric value

EX: T  MOD 2 gives  0  if T is any even number, and 1  if T is any odd number



Operators and Expressions
Logical operators

A Logical Expression is also called a Boolean expression.

- It is composed of operands that have logical values and logical 
operators.

- Its result is a logical value (true or false)



Operators and Expressions
The truth table

(1) AND table

AND          True              False

True          True False

False         False            False
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Operators and Expressions
(2) OR table

OR          True                False

True         True True

False        True               False

(3) NOT table

NOT        True            False

False          True
22



Operators and Expressions
Relational operators:

- A relation Expression is composed of operands and operators.

- Operands may be numbers and/or identifiers that have numeric 
values.

- Its result is a logical value (true or false)



Operators and Expressions

NOTES
1) A relational expression may contain arithmetic sub-

expressions, 
e.g. ( 3 + 7 ) < (12 * 4 )

2)   A logical expression may contain relational and 
arithmetic sub-expressions, 

e.g.
1- x  AND y  AND ( a  > b )
2- (2  + t ) < (6 * w )    AND ( p = q )  



Operator Precedence
Expressions are evaluated according to the precedence rule.

Precedence Rule:

- Each operator has its own precedence that indicates the order of evaluation.

- If the expression has operators of the same precedence, then the evaluation starts
from the left of the expression to the right.
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PrecedenceDescriptionOperator In 

C++

Operator In 
pseudo code

Higherparentheses((

!not

*,  /,  %*,  /,  MOD

Binary plus, binary 

minus

+ ,  -+ ,  -

<, <=, >, >=<, , ≤, >, ≥

Equal, not equal== ,   !== , ≠

&&AND

||OR

LowerAssignment =
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Operator Precedence



Examples

Find the value of the following expression:

(1)      5   +  8   *   2   /    4

16

4

9       (This is the final result)
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Examples .. cont.

(2) ( 9  +  3 )  - 6  /   2    +    5 

12

3

9

14        (this is the final result)
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Examples on Logical Expressions

(1) If  x  =  True, y = False, z = False, find the value of the 
expression  x  AND y  OR z

x   AND y   OR z

False

False      (the final result)
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Examples on Logical Expressions .. cont.

(2) If a = 3, b = 5, x = true, y = false, find the value of the 
expression: ( a  <  b )  AND  y   OR  x

( a  <  b )  AND y   OR x

True

False

True    (the final result)
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Short circuiting:

31

◼ Short circuiting means that we don't evaluate 
the second part of an AND or OR unless we 
really need to.


